ABSTRACT
Infectious bursal disease virus (IBDV) often infects young chickens and causes severe immunosuppression and inflammatory injury. Betaine is an antiviral and anti-inflammatory ingredient that may exert functions through epigenetic regulation. However, the effects of betaine on an IBDV-induced bursal injury and their underlying mechanisms have not been investigated. In this study, betaine was supplemented to the drinking water of newly hatched commercial broilers for 3 wk. Afterward, the chickens were infected with the IBDV. After 5 D of infection, the bursal lesions were examined. The mRNA expression levels of IBDV VP2 gene, pro-inflammatory cytokines, and interferons were detected. Furthermore, the 5-methylcytosine level of the CpG island in the promoter region of IL-6 and interferon regulatory factor 7 (IRF7) were determined. The IBDV induced the depletion of lymphocytes and inflammation in the bursal follicles. IBDV infection considerably elevated the mRNA levels of VP2, IL-6, types I (IFNα and IFNβ) and II (IFNγ) interferons, and IRF7. The CpG island methylation in the promoter regions of IL-6 and IRF7 were substantially decreased after IBDV infection. Betaine administration attenuated the IBDV-induced bursal lesions. Meanwhile, the IBDV-induced mRNA expression levels of IL-6, IFNβ, and IRF7 were suppressed by betaine consumption. Furthermore, the hypomethylation effects of IBDV infection to the promoter regions of IL-6 and IRF7 genes were eliminated and relieved by betaine administration. Our results indicated that the IBDV-induced expression levels of IL-6 and IRF7 genes are associated with the suppression of methylation in the promoter region. Betaine administration through drinking water may alleviate the IBDV-induced bursal injury via epigenetic regulation.
†Show morehttps://doi.org/10.3382/ps/pez280
https://www.sciencedirect.com/science/article/pii/S0032579119479625
More Stories
COVID‐19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence
Betaine postpones hyperglycemia-related senescence in ovarian and testicular cells: Involvement of RAGE and β-galactosidase
Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort