Abstract
Background: The brain–gut–microbiota axis plays a role in the pathogenesis of stress-related psychiatric disorders; however, its role in the resilience versus susceptibility after stress remains unclear. Dietary nutrient betaine is suggested to affect the gut microbiome. Here, we examined whether betaine supplementation can affect anhedonia-like phenotype in mice subjected to chronic social defeat stress (CSDS).
Methods: CSDS was performed during betaine supplementation. Sucrose preference test and 16S rRNA analysis of fecal samples were performed.
Results: CSDS did not produce an anhedonia-like phenotype in the betaine-treated mice, but did induce an anhedonia-like phenotype in water-treated mice. Furthermore, CSDS treatment did not alter the plasma levels of interleukin-6 (IL-6) of betaine-treated mice whereas CSDS caused higher plasma levels of IL-6 in water-treated mice. Betaine supplementation ameliorated the abnormal diversity and composition of the microbiota in the host gut after CSDS. At the genus level, CSDS caused marked increases in the several bacteria of water-treated mice, but not betaine-treated mice. CSDS increased levels of short-chain fatty acids (i.e., succinic acid and acetic acid) in feces from water-treated mice, but not betaine-treated mice. Interestingly, there are positive correlations between short-chain fatty acids (i.e., succinic acid, acetic acid, butyric acid) and several bacteria among the groups.
Limitations: Specific microbiome were not determined.
Conclusions: These findings suggest that betaine supplementation contributed to resilience to anhedonia in mice subjected to CSDS through anti-inflammation action. Therefore, it is likely that betaine could be a prophylactic nutrient to prevent stress-related psychiatric disorders.
https://www.sciencedirect.com/science/article/abs/pii/S0165032720300513
More Stories
COVID‐19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence
Betaine postpones hyperglycemia-related senescence in ovarian and testicular cells: Involvement of RAGE and β-galactosidase
Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort