October 30, 2020

BETACH3

Hypothesis: Betaine decreases the pathogenicity of Covid-19.

Betaine Modulates Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Akt/mTOR Signaling in Methionine-Choline Deficiency-Induced Fatty Liver Disease

Milena Veskovic 1Dusan Mladenovic 1Marina Milenkovic 

Abstract

We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.

https://pubmed.ncbi.nlm.nih.gov/30689995/?from_term=betaine+il-6&from_filter=years.2017-2020&from_pos=3