Qian Li, Mingwei Qu, Ningning Wang
Abstract
Brain ischemia and reperfusion (I/R) injury may lead to a poor prognosis for ischemic stroke, which could be alleviated by anti-oxidants with diminished oxidative stress. Betaine is a natural nutrient found in beetroot and seafood to improve cognitive performance in the elderly. The present study investigated whether betaine could protect the brain from I/R injury. Results showed that betaine treatment could reduce H2O2-induced cell death in the PC12 cell line. Pretreatment with betaine reduced the brain infarct volume and neuronal apoptosis in a rat I/R injury model induced by two-hour middle cerebral artery occlusion (MCAO). Biochemical analyses indicated that betaine treatment decreased pro-inflammatory cytokine production and reduced oxidative stress after I/R injury. Betaine increased the expression of anti-oxidative enzymes, such as glutathione peroxidase 4 (Gpx4) and superoxide dismutase 1 (Sod1), and anti-oxidative non-enzymatic genes, such as 3-mercaptopyruvate sulfurtransferase (Mpst), methionine sulfoxide reductases b1 (Msrb1), and Msrb2. These data suggest that betaine exerts a neuroprotective effect in I/R injury through enzymatic and non-enzymatic anti-oxidative systems and anti-inflammatory mechanisms.
More Stories
COVID‐19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence
Betaine postpones hyperglycemia-related senescence in ovarian and testicular cells: Involvement of RAGE and β-galactosidase
Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort